Four-dimensional steady gradient Ricci solitons with 3-cylindrical tangent flows at infinity

نویسندگان

چکیده

In this paper we consider 4-dimensional steady soliton singularity models, i.e., complete gradient Ricci solitons that arise as the rescaled limit of a finite time singular solution flow on closed 4-manifold. particular, study geometry at infinity such under assumption their tangent is product R with 3-dimensional spherical space form. We also classify flows models in general.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Locally Conformally Flat Gradient Steady Ricci Solitons

In this paper, we prove that a complete noncompact non-flat conformally flat gradient steady Ricci soliton is, up to scaling, the Bryant soliton. 1. The result A complete Riemannian metric gij on a smooth manifold M n is called a gradient steady Ricci soliton if there exists a smooth function F on M such that the Ricci tensor Rij of the metric gij is given by the Hessian of F : Rij = ∇i∇jF. (1....

متن کامل

Gradient Kähler Ricci Solitons

Some observations about the local and global generality of gradient Kähler Ricci solitons are made, including the existence of a canonically associated holomorphic volume form and vector field, the local generality of solutions with a prescribed holomorphic volume form and vector field, and the existence of Poincaré coordinates in the case that the Ricci curvature is positive and the vector fie...

متن کامل

Rigidity of Gradient Ricci Solitons

We define a gradient Ricci soliton to be rigid if it is a flat bundle N×ΓR k where N is Einstein. It is known that not all gradient solitons are rigid. Here we offer several natural conditions on the curvature that characterize rigid gradient solitons. Other related results on rigidity of Ricci solitons are also explained in the last section.

متن کامل

On Gradient Ricci Solitons with Symmetry

We study gradient Ricci solitons with maximal symmetry. First we show that there are no non-trivial homogeneous gradient Ricci solitons. Thus the most symmetry one can expect is an isometric cohomogeneity one group action. Many examples of cohomogeneity one gradient solitons have been constructed. However, we apply the main result in [12] to show that there are no noncompact cohomogeneity one s...

متن کامل

On Four-Dimensional Gradient Shrinking Solitons

In this paper, we classify the four-dimensional gradient shrinking solitons under certain curvature conditions satisfied by all solitons arising from finite-time singularities of Ricci flow on compact four-manifolds with positive isotropic curvature. As a corollary, we generalize a result of Perelman on three-dimensional gradient shrinking solitons to dimension four.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108285